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The Galerkin finite element method is utilized to obtain quite detailed results for flow 
through a channel containing a step at Reynolds numbers of 0 and 200. This technique, 
however, like its centered finite difference counterpart, is prone to generating wiggles or 
oscillations when streamwise gradients become too large to be resolved by the mesh. These 
wiggles are carefully analyzed and are used as a guide in obtaining accurate solutions via 
successive mesh refinement. It is argued that the appropriate solution to the wiggle problem is 
the utilization of selective grid refinement (easily available via isoparametric finite elements) 
rather than taking recourse to upwind methods which effectively reduce the local Reynolds 
number and thereby generate deceptively smooth and often inaccurate results. 

INTRODUCTION 

Inspired and challenged by the recent work of Hughes etal. [ 11, wherein they 
essentially recommend the abandonment of conventional Galerkin methods for the 
finite element discretization of the Navier-Stokes equations in favor of an ad hoc, 
modified approach (“optimal upwinding”) which ostensibly yields a “solution” (and 
eliminates spurious “wiggles”) for any Reynolds number (Re), we embarked upon 
this study with the goal of shedding more light on the following relevant and 
important question: “Can one obtain smooth and accurate solutions without resolving 
the boundary layer?” (See also Hedstrom and Osterheld [2], who address somewhat 
similar issues, both analytically and via finite difference calculations.) 

Since we needed to address a number of related issues along the way, such as grid 
resolution, boundary conditions, and mathematical singularities, we have decided to 
present our results somewhat in the manner of a “case study”; many of our obser- 
vations for this particular simulation will apply to other flows and may therefore be 
useful to others. The presentation is developed along the following lines: (1) statement 
of the problem, (2) a very brief review of previous work, (3) presentation of our 
results for Stokes flow (Re = 0) and for Re = 200 using various domain 
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discretizations and boundary conditions, and (4) a discussion of these results and 
some of those obtained using upwinded formulations. 

We should mention that there are other FEM researchers attempting to mimic the 
“successes” of upwinding demonstrated by finite difference practitioners. Although 
most of these have been applied to the related advection-diffusion equation (see the 
ASME Symposium referred to in Ref. [6] for a list of references and numerous 
discussions on the subject of upwinding), Zienkiewicz and Heinrich [3] have been 
employing upwind methods on the Navier-Stokes equations. They use different 
techniques than those of Hughes et al., based on the ideas presented in Heinrich et al. 
141, and it is not yet clear which of the two “competing” schemes is better. We 
should also mention that the optimal upwind method employed in [ 1) has been 
improved and thus superseded by Hughes et al., in their contribution to Ref. [6]; 
additionally, they are still striving for schemes which are even better [5]. 

However, we still believe, and will attempt to demonstrate, that the conventional 
(Galerkin) treatment of the advection terms, which generates predominantly 
“centered difference-like” approximations, is usually to be preferred because it has the 
important property that it can alert the analyst to potential solution difficulties 
associated with a mesh which is too coarse to resolve certain difficult, but important, 
features of the flow field such as boundary layers or singularities. The example in this 
paper is a detailed treatment of one of the examples discussed in Gresho and Lee [ 6 ], 
in which (i) further arguments in favor of conventional Galerkin methods are 
presented and (ii) it is pointed out that FEM workers are rediscovering some of the 
lessons regarding upwind schemes and their inadequacies previously learned in finite 
difference simulations. 

Statement of Problem 

The basic simulation is that of laminar flow over a square step which forms a 
portion of the lower boundary of the domain. Following the work of Hughes et al., we 
located the step fairly close to the inlet region, For most of the simulations, the top 
boundary is located near the top of the step and is a no-slip wall; i.e., we are 
considering flow in a channel containing a step. In order to estimate the effects of the 
confining upper surface, several simulations were also made which are intended to 
roughly approximate the flow over a step in a partially unbounded flow. Finally, one 
simulation was made using a symmetry boundary condition at the upper “surface.” 
We should point out that this particular problem, while interesting in its own right, 
and technically difficult owing to boundary layers and sharp corners, was somewhat 
secondary to our major goal of demonstrating that affordable high-quality solutions 
are usually attainable using the conventional FEM. Nevertheless, the results to be 
presented for this problem may well represent the most accurate numerical 
simulations reported to date. 

We appreciate the goal of some researchers of obtaining accuracy away from thin 
boundary layers without actually resolving these boundary layers in any detail. While 
we sympathize with these objectives, we also believe that there are many important 
situations where such approaches prove difficult, if not impossible; e.g., in the 
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problem treated in this study, the physics of flow in the region of the upstream corner 
is, in some sense, as difficult and important as that in the downstream recirculation 
region and cannot, we believe, be accurately simulated if the associated boundary 
layer is ignored or artificially thickened. 

Brief Review of Previous Work 

While there are relatively few studies of flow over a step, two related situations 
have been studied in more detail: (1) flow through a pipe orifice (for which a wealth 
of experimental data exists) and (2) flow through a channel containing a sudden 
expansion (the backward-facing step); the latter case has also been the subject of both 
analytical and experimental studies at low Reynolds number. 

(a) Flow over a step. Greenspan [7] and Friedman [S] employed the tinite 
difference method (FDM) using the stream-functioq’vorticity approach with upwind 
treatment of advection for Re up to 1000. Hughes et al. [l] presented several results 
using the FEM on a very coarse mesh, first showing the alleged deficiency of the 
conventional Galerkin method, then the “superiority” of the upwind method. For 
Re = 200, the conventional method produced spurious wiggles in the velocity vectors 
upstream of the step and a reasonable recirculation eddy downstream. The upwind 
solution generated no wiggles and a somewhat shorter and less intense downstream 
eddy. As further “proof’ of the power of upwinding, they then presented results for 
Re = 10’ on the same coarse mesh, which we believe is unfortunate in that it merely 
reiterates the fact that most upwind schemes become basically insensitive to the 
“input” value of Re (at large Re, most of the viscosity is artificial-i.e., 
numerical-and the resulting ef@ctive Re can be many orders of magnitude less than 
the input value). 

Hughes et al. introduced a further difficulty into the problem by employing a flat 
inlet velocity distribution rather than a “fully developed” (parabolic) profile; hence 
they are in effect treating the problem of developing flow over a step since this 
boundary condition introduces pressure singularities at the inlet wall regions. This 
leading edge discontinuity was discussed by Wang and Longwell [9], who treated 
developing Poiseuille flow in a channel without a step. 

(b) Flow through a pipe orifice. Since a pipe orifice is commonly used as a 
flow metering device, it is not surprising that there are more investigations of these 
flows than of flow over a step. These flows were simulated via FDM by Mills [lo], 
Greenspan [ 111, Mattingly and Davis [ 121, and Nigro et al. [ 131. 

(c) Flow through a channel with a sudden expansion. The numerical simulation 
of the simpler back step problem has been treated very extensively by Roache and 
Mueller 1141 and analytically by Moffatt [ 15]-briefly-and in more detail by 
Weinbaum [ 161. Roache and Mueller used the FDM with upwind differencing; 
detailed results are presented for Re from 0.1 to 100. One of the key results is the 
numerical demonstration of the fact that the flow separates even for Stokes flow 
(giving a small corner eddy) and that the separation point moves up the face of the 
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step, approaching the corner as Re is increased. These effects were previously 
predicted by Kawaguti [ 171 and were verified experimentally by Matsui et al. 1181 for 
a range of Re from -5 to -50. In general, of course, separated Stokes flows have 
been known for some time; e.g., in lubrication theory [ 191. 

Weinbaum also predicted that separation could occur below the sharp corner and 
even predicted an approximate form of the corner singularity via analysis of the 
biharmonic equation for the stream function and the argument that Stokes flow will 
prevail sufftciently close to the corner. 

Finally, Hutton and Smith 1201 have recently reported successful simulations of 
this flow employing, like we, the conventional FEM (no upwinding). 

Technical Approach 

We believed initially that the cause of the wiggles (other than “central 
differencing”!) was manifold and designed an experimental program which might 
separate (and rank) the various contributors and thereby improve our overall 
understanding regarding numerical “solutions” of the Navier-Stokes equations. The 
wiggles were believed to be caused by a combination of the following factors: 

(1) Too coarse a grid to resolve the steep gradients occurring in the direction 
of flow. 

(2) Inlet boundary conditions and the resulting leading edge singularities. 

(3) Proximity of the inlet region to the step (and fixed velocity boundary 
conditions at the step). 

(4) The sharp edge singularity at the leading corner of the step. 

In the remainder of the paper, we will briefly discuss the equations and solution 
method employed, present a summary of our numerical experiments and findings, 
discuss the implications of these resuts, and draw conclusions relevant to our stated 
objectives. 

NAVIER-STOKES EQUATIONS AND SPATIAL DISCRETIZATION 

The equations of motion and continuity (momentum and mass conservation, 
respectively) for a constant property, incompressible Newtonian fluid are the 
Navier-Stokes equations, written here in stress-divergence form: 

pu.vu=v *f, (14 

v.u=o, (lb) 

where u = (u, u) is the velocity vector, p is the density, 
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is the symmetric stress tensor, P is the pressure, p is the viscosity, and 6, is the 
Kronecker delta. Given appropriate boundary conditions, Eq. (1) can be used to 
obtain the velocity components (u and v) and the pressure (P). 

The spatial discretization of these equations is performed via the conventional 
Galerkin finite element method (on the weak form of Eq. (1)) wherein the velocity 
and pressure are approximated by 

’ = ~ Uj~j(X) 
j=l 

Pa) 

and 
M 

‘= x pjVj(x), 
j: 1 

where there are N “free” velocity nodes and M pressure nodes in the discretized 
domain. The basis functions for velocity approximation, Bi(x), are piecewise 
polynomials which are one degree higher than those for pressure approximation, 
vi(x), for reasons enumerated previously (e.g., Olson and Tuann [21]; see also 
Sani et al. (221). Although our element library contains several types of quadrilateral 
isoparametric elements, in this study we use only one: it has nine nodes and employs 
biquadratic approximation of the velocity and (using only the four corner nodes) 
bilinear approximation of the pressure. Upon substituting Eq. (2) into the weak form 
of Eq. (1) and using {tii), {vi} as test functions for Eqs. (la) and (lb), respectively, 
the following discretized equations are obtained (written in a compact matrix form): 

[K + N(u)]24 + cp = ji @a) 

CT24 = g, (3b) 

where u is the global vector (length 2N) of the nodal velocities (ui and ui), p is a 
global vector (length M) of the nodal pressures (pi), f is a 2N global vector which 
incorporates the appropriate boundary conditions in velocities or surface tractions, 
and g is an M vector incorporating the effects of specified velocities. (Note that no 
provision is made for employing pressure boundary conditions as they are not 
allowed-the conservation of mass is violated if pressures are specified along any 
portion of the boundary; see Gresho et al. [23].) K is the 2N x 2N viscous matrix, 
N(u) is the 2N X 2N nonlinear advection matrix (obtained, as are all others, by 
“exact” integration using a sufftciently accurate Gauss-Legendre quadrature rule 
(3 x 3 generally suffices; see Leone et al. [24]), thereby generating an accurate and 
consistent (“conventional”) “centered difference” approximation to u . Vu (as shown 
in [6] for the simpler four-node element, the conventional FEM generates an 
advection approximation which is mostly “centered,” but which also contains some 
upwind and downwind contributions), C is the 2N x A4 pressure gradient matrix and 
its transpose, CT, is the M x 2N divergence matrix. Details of the formulation and 
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matrix definitions are omitted as they are space-consuming and have been adequately 
detailed many times (e.g., Gartling and Becker [25], Gresho et aE. [23]). 

Equation (3), which describes a nonlinear algebraic system in u and P, is solved by 
the Newton-Raphson method which leads to the following sequence of linear systems 
(for 6~ &), 

i 

K+N(u,)+N’(u,) I c u,+l--u, 
------------I-- ------ 

ii 1 

= pff~~~$!~Tj+~~ 

for m = 0, l,..., where (m + 1) is the iteration number. In the Jacobian matrix, the 
additional matrix, N’(u~), represents terms such as &/ax, etc. (whereas N(u) 
corresponds to the advection operator u . V). We compute our nonlinear (and linear) 
Jacobian matrix terms analytically, element by element, and store all resulting triply 
(and doubly) subscripted arrays on disk. The linear systems are solved using a disk- 
based unsymmetric frontal solver without pivoting, largely based on Hood’s [26] 
published version. Using as an initial guess the solution from a lower Reynolds 
number (or, as a worst case, from Stokes flow), the solution to Eq. (4), which is 
defined such that a relative RMS norm on 6u is sufficiently small (10-5-10-4 in this 
study), typically requires 5-10 iterations (only one or two iterations are required 
once the zone of quadratic convergence is reached). 

NUMERICAL EXPERIMENTS 

Following Hughes et al., we attempted to simulate the developing flow in a one- 
unit-high (the characteristic length for defining Re) channel containing a step located 
1.2 units from the inlet which is 0.4 units high and 0.4 units across. The inlet 
boundary condition is a “flat” velocity profile, u = 1 and v = 0, except that u = 0 on 
the top and bottom no-slip surfaces. No-slip boundary conditions were used 
everywhere else except at the exit, where traction-free conditions (the natural 
boundary conditions associated with Eq. (1)) were generally employed (zero normal 
and tangential stress): 

fn=fx=-P+2&0, 

f,=f,=p g+g =o. 
( 1 
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FIG. 1. Grids: a. (Grid 1) Original coarse grid of Hughes et al. (48 elements, 227 nodes). b. (Grid 2) 
First refined grid (155 elements, 685 nodes). c. (Grid 3) Extended version of Grid 2 (205 elements, 
895 nodes). d. (Grid 4) Finest grid-more detail at inlet and across step (230 elements, 1003 nodes). 
Grids 3A and 4A have the top two rows of elements of grids 3 and 4, respectively stretched to extend the 
domain to y  = 2. 

The overall length of the channel was either 4 or 6 units, as we found a continuing 
need for a longer channel. The sequence of discretized meshes, ranging from the 
coarse mesh of 48 elements (a la Hughes et al.) to the finest mesh of 230 elements, 
which reflects the observed requirement for finer meshes as we looked more closely at 
the solution details, is shown in Fig. 1. 

Consistent with the goals stated earlier, and with our hypotheses regarding the 
causes of the wiggles, we designed a (semi-)systematic sequence of numerical 
experiments. Since the total number of computer runs became quite large, we must 
omit a good fraction of them; Table I presents a summary (approximately 
chronological) of the results we believe to be most relevant. Even this abbreviated list 
is too long to discuss in much detail; we hope tha the table is largely self-explanatory, 
but we will discuss certain salient results from this list of experiments in some detail. 

Figure 2 shows an appropriate starting point; the Stokes flow (Re = 0) solution on 
the coarse grid. The noteworthy features of this result are the vector wiggles at the 
inlet and outlet (even Stokes flow can have wiggles). These wiggles are, of course, 
unrelated to advection and are explained as follows: the inlet wiggles are caused by 
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FIG. 2. Stokes flow solution for “flat” inflow profile on Grid 1. 

FIG. 3. Stokes flow solution for parabolic inflow profile on Grid I. 

the leading edge singularities (high pressures are generated at the corners where the 
fluid decelerates and converges toward mid-channel) and the outlet wiggles, and 
general flow divergence there, are caused by an inherent incompatibility in boundary 
conditions. It is clear that the flow is striving toward the unindirectional distribution 
associated with Poiseuille flow, for which case u = u(y), v = 0, and (especially) 
&~/ax = 0. But the outlet boundary condition of zero shear stress (Eq. (5b)) requires 
&@y + &/ax = 0; noting that u must be zero at the top and bottom walls implies 
that Bu/+ # 0. Hence &/8x # 0 and a (shear) stress-free boundary condition is nor 
compatible with a parallel flow. Although for this simple case, it is easy to remedy 
this “problem” (either u = 0 or a linear distribution of imposed shear stress would do 
it), it turns out that the stress-free natural boundary condition is one of the best 
outflow boundary conditions under many conditions of more complex flows at higher 
Re (where the outlet conditions are truly unknown and where inertial effects become 
important relative to viscous effects). For further discussion of the outflow boundary 
condition, see Hutton and Smith 1201 and Gresho ef al. [23]. 

The inlet wiggles are also easy to eliminate; Fig. 3 shows the effect of a parabolic 
(fully developed) inflow boundary condition-there are no inlet singularities and no 
inlet wiggles. See also Runs 7-9 in Table I, which prove these points on a simple 
(no step) channel flow using a 10 x 5 grid. 

Figure 4a shows a finer grid (Fig. lb) version of the Stokes solution of Fig. 2; 
while the inlet and outlet wiggles are still present (the grid is still coarse in these 
regions), they only slightly affect the interior details of flow near the step. The 
streamlines for this case are shown in Fig. 4b, where the symmetric upstream and 
downstream corner eddies are now resolved by the liner grid. It is noteworthy that the 
restrictive domain and boundary conditions at the channel top causes much smaller 
eddies than would occur in a more unbounded flow. Thus, the results of Roache and 
Mueller [ 141, the beautiful experimental results of Taneda 1271, and some of our own 
results using different domains and boundary conditions at the top, all display larger 
eddies (the separation point is much closer to the top of the step). All streamline plots 
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Id) 

FIG. 4. Stokes flow solution for “flat” inflow profile on Grid 2. a. Vector field. b. Streamlines. 
c. Isobars (AP = 10.1). d. Vorticity contours. 
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_-__. ----m---, .  

FIG. 5. Solutions for Re = 200 on grid 1. a. “Flat” inflow profile. b. “Flat” inflow profile with flow 

direction reversed. c. Parabolic inflow profile. 
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were prepared using a minimally adjusted velocity field (as described in 
Sani et al. [28]) and contour integration over element boundaries. The “adjusted” 
velocity is required in order to assure element mass balances and good streamlines; it 
generally has an imperceptible visual effect on the velocity vector plots. The 
corresponding pressure field, Fig. 4c, clearly shows the effect of the leading edge 
singularities and the significant variation of pressure near the step (the pressure in 
this figure is made dimensionless by ,uuu,,/f). Finally, the vorticity contours are 
presented in Fig. 4d, showing the effect of vorticity generation at the sharp corners 
and the overall symmetry (near the step) associated with Stokes flow. Vorticity 
contours were computed using “Scheme 4” of Lee et al. [29] in which the 3 x 3 
Gauss point values of computed vorticity from w  = &/8x-&/@, are linearly 
extrapolated back to the nodes after which simple averaging is employed (our contour 
ploting package requires nodal values; otherwise we would contour the Gauss point 
values directly-and probably those from the more accurate 2 x 2 Gauss points). 

We now move on to the nonlinear problem with Re = 200, beginning with the 
coarse mesh of Fig. la. In Fig. 5a is our version of the wiggly solution criticized by 
Hughes et al. [ 11, who made the statement which triggered this study: “We believe 
this problem demonstrates the inappropriateness of Gauss-Legendre integration of 
the convection term.” The inlet wiggles now appear to be caused more by the 
presence of the step than the leading edge singularity since they are strongest near the 
step. The outlet wiggles are now absent, owing to the importance of the inertia terms 
at this Re. 

To determine the importance of the close proximity of the step as a cause of the 
wiggles, we reversed the flow direction to obtain the result shown in Fig. 5b. It thus 
appears that the step location has nothing to do with the cause of the wiggles; 
presumably they occur independently of the location of the inlet, are of maximum 
amplitude near the step, and are only slowly damped in the upwind direction. 

In Fig. 5c are shown the results of removing (or reducing) the leading edge 
singularity by using the parabolic velocity profile as an inlet boundary condition. The 
wiggles are only slightly reduced (10% or so), and another potential cause of the 
wiggles is largely eliminated. 

Having narrowed the main causes to the steep gradients in the flow direction 
associated with the presence of the step, the associated pressure singularities, and the 
inability of the coarse grid to deal with them, we generated our first (graded) fine 
mesh (Fig. 1 b) and repeated the computations (for which the Stokes flow results have 
already been discussed). Before presenting these results, however, we disgress briefly 
to introduce our better (smoother) inlet boundary condition when a “flat” profile is 
desired, since it is employed in all subsequent computations. When piecewise 
quadratic approximation is used for the velocity, the inlet velocity profile resulting 
from employing u = 0 at the walls and u = 1 at all nodes in between, displays an 
awkward maximum (u,,,~~ = 1.125) in the element containing the wall boundary (and 
there is a discontinuity in slope at the node shared by the next element). This 
undesirable effect is easily eliminated by setting the inlet velocity to 0.75 at the 
(inflow) midside nodes of these walls elements, thus causing u(y) to increase 
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FIG. 6. Solution for “flat” inflow profile, Re = 200, on grid 2. 

FIG. 7. Details of downstream eddy region for Re = 200: a. Grid 2, showing spurious double eddy. 
b. Grid 3, showing single eddy. 

smoothly to 1.0 at the second node from the boundary (and it has zero slope there). 
This is the “smoother inlet B.C.” referred to at Run 14 in Table I. 

Figure 6 shows the finer grid solution for Re = 200 and demonstrates that the 
wiggles were caused by the poor resolution of a rapidly changing flow field near the 

step (since they are now absent). Now that we have a better solution, however, the 
eddy length has increased and caused a “new (minor) problem”-the eddy is too long 
for the grid and the flow field experiences some perturbations via interaction with the 
outflow boundary conditions. The result is a sort of spurious second eddy near the 
outlet, as shown in Fig. 7a (which is a blowup from Fig. 6). This led to our third grid 
(Fig. lc), which is basically an extended version (to x = 6 rather than 4) of grid 2. 
Repeating the calculation for Re = 200 showed, as expected, the appropriate change 
in the eddy details near x = 4, which is shown in Fig. 7b (there is no spurious second 
eddy). It also showed, unfortunately, a reintroduction of small outflow wiggles 
caused, presumably, by the same incompatibility referred to earlier; this problem 
appears to be most prominent when the outflow “wants to be” unidirectional close to 
a no-slip wall. The streamlines, pressures, and vorticities on this sufficiently long grid 
are shown in Fig. 8. Figure 8a shows a very small upstream eddy and a downstream 
eddy of length -2.7 (6.75 step heights). The isobars of Fig. 8b clearly show the need 
for fine zoning near the leading corner singularity and provide further evidence of the 
cause of the original wiggles (i.e., they are the result of gradients which are too steep 
to be captured by a coarse mesh). The vorticity distribution, Fig. 8c, shows large 
generation at or near the corners as well as at the inlet lower boundary, and its 
advection downstream. 
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(a) /0.40 r0.60 /O 80 

* m,n= -.038 f-.02 f of 0.05 Jo.10 J 0.20' 

FIG. 8. Additional results for Re = 200 on grid 3: a. Streamlines. b. Isobars (AP/pui = 0.240). 
c. Vorticity contours. 

FIG. 9. Solution for Re = 85 on grid 3: a. Vector field. b. Streamlines. 

Having resonably adequately resolved the flow at Re = 200, we used the same grid 
to estimate the efictive Re in the upwinded simulation of Hughes et al. Figure 9 
shows the results for Re = 85; based on eddy length (the only convenient measure), 
this represents our best estimate of their effective Re (note also the near absence of an 
upstream eddy at this Re and that separation occurs just below the corner). 
Examination of Figs. 4b, 8a, and 9b reveals that the upstream eddy is smallest at 
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FIG. 10. Unconfined channel simulation for Re= 200, showing outflow boundary condition 
problems (grid 3a). 

FIG. 11. Same as Fig. 10 except better outflow boundary conditions. 

FIG. 12. Streamlines for unconfined channel simulation at Re = 200 on grid 3a (corresponding to 
Fig. 11). 

Re = 85 while the downstream eddy size increases monotonically with Re. These 
results are in general agreement with those of Friedman [8] and Mills [lo]. 

Since all of these channel flow simulations indicated that separation occurred at 
(or slightly below) the trailing corner of the step (for 65 < Re < 200), we performed a 
few experiments intended to approximate flow over a step in an unbounded fluid to 
determine the effects of the confining upper wall and to see whether separation would 
occur closer to the leading corner. Since this was more or less an afterthought, we 
performed only limited analysis: (1) we did not increase the number of elements in 
the vertical (rather, we stretched the vertical extent from 1.0 to 2.0-the Reynolds 
number is still based on I = l-by grading the mesh), (2) we did not lengthen the grid 
beyond 6 units. In order to model the semi-infinite domain in the least restrictive 
manner, we imposed traction-free boundary conditions at the top boundary to permit 
outflow and inflow. Figure 10 shows the results for Re = 200, on extended grid 3 
(grid 3A), using an outflow boundary condition of zero vertical velocity (we 
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0 
(b) 

2.0 
-!- = m.038 
PU$ 

FIG. 13. Unconfined channel simulation for Re= 200 on the finest grid (4a): a. Streamlines. 
b. Isobars @P/put = 0.138). 

erroneously expected a nearly parallel flow) and zero normal stress. Here we see 
another cause of very noticeable wiggles; the outflow boundary condition is too 
restrictive relative to what the flow “wants to be.” (Would upwinding “cure” these, 
too? We believe that it would.) Once again, the conventional Galerkin FEM has 
alerted us to a simulation deficiency. Thus, we modified the outflow boundary 
condition from u = 0 to f, = 0 and the much-improved results are shown in Fig. 11; 
there are no wiggles and this outflow boundary condition again causes minimal inter- 
ference with the interior flow. The corresponding streamlines are displayed in Fig. 12 
and show: (1) the flow now separates from the top of the step (downstream of the 
leading corner) and (2) the eddy is stronger, higher, and longer than that for channel 
flow (it is, of course, too long for this grid to fully resolve). Finally, Fig. 13 shows 
some results from the same simulation performed on our (vertically extended) finest 
grid (grid 4A, Fig. Id), in which we improved the mesh at the inlet and across the top 
of the step (there were other reasons for generating this fourth grid, which are 
outlined in Table I and further discussed later). Comparing Figs. 12 and 13a it is seen 
that the finer grid has caused a shift in the separation point and a slight (-6%) 
decrease in the eddy strength. Additional fine zoning very close to the step, and a 
longer (and probably higher) domain would be required to provide a truly accurate 
result for this case. The isobars corresponding to this run are shown in Fig. 13b, and 
may be compared with those in Fig. 8b. 

In our final simulation (Run 27 of Table I), we modified our top boundary 
condition from a no-slip wall to a stress-free symmetry condition (like those used for 
pipe orifice calculations) in order to approximately simulate the results of Roache 
and Mueller [ 141, who showed what we believed at first to be an exceptionally long 
eddy for Re= 100 (they used step height to define Re; on this basis, our results at 
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TABLE II 

Summary of Computer Cost 

Run 
number 

Number of 
elements 

Number of 
equations 

CPU time 
(set/iteration) 

Number of iterations 
to Re = 200 (starting 
from Stokes solution) 

2 48 520 2.4 9 
15 155 1558 10.8 6 
17 205 2033 14.8 5 
21 230 2278 16.6 5 

Re = 200 correspond to theirs at Re = 80)-and with upwinding yet-their eddy 
length was 7.5 step heights (vs -6.75 for our channel flow). The results were 
interesting and reassuring: at Re = 200 (Re = 80 a la Roache and Mueller), our eddy 
length was approximately 15 step heights (this is quite approximate, since our grid 
ended at 11 step heights and we extrapolated the separation streamline); the minimum 
value of the stream function in the vortex was w-0.043. Separation occurred at the 
trailing corner and the separation streamline pointed slightly upward (similar to, but 
much less than, that shown in Figs. 12 and 13a), in apparent agreement with some of 
the analytical results of Weinbaum [ 161. The most important additional result from 
this and the previous simulations is that the location of the separation point and the 
details of the separated flow are strongly dependent on the upper boundary condition; 
a confined channel (not surprisingly) restricts the length and strength of the eddy 
relative to less confined configurations. 

Although our current code is a “research” code in that it contains many unused 
options and is not very “streamlined,” some cost data may still be of interest. 
Table II shows the total CPU cost (including I/O, which is typically 20-40%) on a 
CDC-7600 for the four grids employed in this study. For the last three grids, the cost 
varies approximately with the 1.13 power of the number of equations, which may not 
be too surprising since the “front width” is constant for these three grids. 

DLSCUSSION 

Additional insight into the nature of the difficulties inherent in this simulation is 
revealed in the pressure profiles shown in Figs. 14-16. In Figure 14 are shown the 
surface pressure distributions on and near the step for Stokes flow from three 
different grids. The existence of (symmetric) pressure singularities is clearly revealed; 
even the finest grid has not adequately resolved the singularities, as evinced by the 
oscillations across the top of the step. It appears that the singularities are located 
near the corners, but on the vertical sides of the step; the similarity in the extrema 
from grids 2 and 4 might also suggest that the pressure is finite at these discon- 
tinuities. These observations are not in accord with the results of Weinbaum [ 161, 
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FIG. 16. Pressure distribution at y  = 1.0 for Re = 200. 

who predicted infinite pressures at the corners (P N f1/r0.456); our grid is apparently 
too coarse the reveal the true behavior very close to the corners. The pressure 
oscillations appear to be localized, however, since the pressures are quite smooth at 
the first “row” of interior nodes. Also, the vertical component of velocity changes 
sign several times along the first row of nodes above the top of the step, further 
indicating that our solution, even on the finest grid, is not yet correct in all details 
(there are still some very small wiggles). The corresponding pressures for Re = 200 
are presented in Fig. 15 and seem to indicate that the pressure singularity is 
somewhat less severe for this case, although the gradient near the leading corner is 
very large. The differences in the solution between grids 3 and 4 are quite small in 
general, although the pressure minimum along the top of the step is not so well 
resolved by grid 3. Again, these results differ from those of Weinbaum in that the 
presence of the inertial terms has significantly affected the surface pressure field. 
Finally, the much smoother pressure distribution along y = 1 (which is the top wall 
for the channel flows) is presented in Fig. 16. 

We believe that a partial explanation of the smoother pressures from the 
Navier-Stokes equations than from the Stokes equations is the following: In Stokes 
flow, the pressure satisfies the Laplace equation and the only source of singularities 
can be on the boundary (and these effects are rapidly damped away from the boun- 
daries owing to the well-known smoothing property of the Laplacian); hence, the 
pressure can vary much more rapidly on the boundary than in the interior. In 
Navier-Stokes flow, however, the pressure satisfies a Poisson equation whose 
“source term” (composed of products of first derivatives of ZJ and v), if “well 
behaved” and sufficiently “strong,” can mitigate the effects of boundary-caused 
singularities; hence, the solution can be smoother, even on the boundary. In a 
discretized solution to the Navier-Stokes equations, the source term may not be so 
“well behaved” on a coarse mesh, and the mitigating effects may then be absent; in 



FLOW OVER A STEP 187 

fact, the reverse can occur. In this case, the hyperbolic nature of the advection terms 
will propagate the “problem” to other parts of the domain in the form of wiggles or 
oscillations; i.e., spurious “noise” is “generated” by the too-sharp gradients and 
“radiated” by the advection terms when the mesh is too coarse. These effects are 
absent in most upwinded simulations because of numerical diffusion. 

As a result of our numerical experiments (including one not yet discussed in which 
we “rounded” the sharp corners by moving several of the nodes defining the 
step-the results, on the coarse grid, showed upstream wiggles which are little 
different from those for the step) and supporting analysis, we believe we can now 
more confidently state the principal cause of the wiggles on a coarse mesh: the 
horizontal component of velocity must go from O(1) to zero in a distance approx- 
imately O(l/Re) to 0(1/e) e as the flow approaches the step. This requirement 
forces large gradients in the direction of flow which obviously cannot be “captured” 
by a coarse mesh. The conventional FEM, with essentially negligible artificial 
diffusion (which reduces Re and spuriously thickens the boundary layer toward the 
limit of the mesh interval) responds (and “overreacts”) to this situation and generates 
“noise” (oscillations) which is propagated upstream by the (nonlinear) advection 
terms. It is, in fact, the (essentially-see Lee et al. [30]) nondiffusive central 
difference nature of these terms, and not the nonlinearity, which is the major cause of 
the error propagation (nonlinear interactions will affect the results). For example, 
even the linear advection-diffusion equation (1-D or 2-D) will generate upstream 
oscillations under certain conditions (e.g., under the tight constraint caused by 
specifying the value of the dependent variable at the outflow coupled with a large grid 
Peclet number. This type of example is also discussed by Hedstrom and 
Osterheld [2], Gresho and Lee [6], and by Hughes et al. in their Figs. 16-18; see also 
the valid criticism of this computation by Gartling [31], however). 

We believe that the proper cure for these wiggles (and those from advection-dif- 
fusion when the “specified value” outflow boundary conditions must be employed) is 
to utilize the inherent capability of isoparametric finite elements and rezone in the 
region causing the wiggles so that the (important) “difftculty” (singularity, boundary 
layer, etc.) is adequately resolved by the mesh; the bonus accruing from the cost of 
rezoning (and judicious rezoning need not be too expensive) is that the solution can 
usually be relied upon once the wiggles have been (properly) reduced or eliminated 
(see also Gresho and Lee [6]). 

Consistent with the above explanation, we believe that the conventional Galerkin 
FEM should especially be employed on all new problems; if there are inherent 
difficulties with the grid selected, (and/or boundary conditions and/or parameter 
values), the resulting oscillations will identify the locations of these difficulties and 
provide the impetus to rezone in these regions and thereby obtain a good and valid 
solution. Upwind methods, on the other hand, may deprive the analyst from obtaining 
a good solution simply because they are too insensitive to inherent problem dif- 
ficulties. 

The basic fallacy of upwinding (besides “smooth implies accurate”), as pointed out 
nicely by De Vahl Davis and Mallison [32], is that the effective Re is variable 
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throughout the mesh and is always less than the desired (input) Re; the effective Re 
approaches the desired Re only in the limit of Ax -+ 0. This can be most easily 
demonstrated via the one-dimensional advection-diffusion equation, where the Peclet 
number (Pe) plays the role of the Reynolds number (ratio of advective to diffusive 
transport): 

where u is a prescribed velocity and K is the diffusivity. If upwind finite differencing 
is employed on the advection term, the numerical result is identical to that in which 
central differencing is employed on the equation 

(7) 

where Ax is the grid spacing and $U Ax is the artificial (numerical) diffusivity. 
Nondimensionalizing this equation with 1 (characteristic length of the problem) for 
length and I/u for time gives 

aT 8T 
at+== A++? 

t 1 
g, 

where Pe = d/K is the desired Peclet number. By equating the coefficient of a2T/8x2 
to l/Pe,,, the effective Peclet number is obtained as 

peeff = 
Pe 

1 + i(Ax/Z) Pe ’ 

from which it follows, for a fixed Ax/f, that Peeff z Pe when Pe is small, but Peeff + 
21/Ax as Pe+ co, i.e., there is an upper limit (usually not very large ) to the effective 
Peclet number using upwind techniques. This also explains the relative insensitivity of 
the results to Re for large Re, as seen, for example, in the work of Greenspan [7]. A 
similar result for the two-dimensional Navier-Stokes equations is presented by De 
Vahl Davis and Mallison; for a lid-driven cavity simulation at a desired Re of 1000 
on a 31 x 3 1 mesh, they show that the effective Re is as low as 240 and that the 
average effective Re is closer to 400. They also argue that a 100 x 100 mesh would 
be required in order for an upwind scheme to obtain a minimum effective Re of 900. 

Of course the FEM “optimal upwinding” scheme of Hughes et al. may be a 
significant improvement over the conventional “full upwinding” discussed above (the 
I factor in Eq. (8) can vary throughout the mesh). The optimal upwinding has the 
iice property that it approaches “central differencing” (i.e., conventional FEM) as 
the local (element-based) Re-r 0; but in the other limit (large local Re), it too 
approaches “full upwinding” and the effective Re is substantially lower than the 
desired one. Hence, we believe that the so-called solutions presented by Hughes et al. 
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for Pe or Re of O(10’) on coarse meshes more closely resemble flows with effective 
Pe or Re of probably more like O(lO*)). 

Another recent study by Moult et al. [33] points out both the good and bad 
features of upwinding. The good feature of upwind methods (which they utilize) is 
that they are “robust” in the sense that solutions are easier to obtain than with 
central differences (especially with iterative solution methods). The bad feature is, of 
course, that the solutions are often deceptively inaccurate. They therefore combined 
the features of both methods via FEM and FDM in a stream function/vorticity 
formulation, using an iteration scheme which “looks like” upwind, but linally yields a 
solution corresponding to central differences (they effectively solve “many” (several, 
presumably; they neglected to give details) “upwind sub-problems” in order to 
converge to a centered difference result). 

As a final admonition regarding upwinding, we believe that it is inherently risky 
because it generates a false sense of security which runs counter to both logic and 
physics. The false sense of security can result from obtaining smooth (and “easy to 
obtain”) solutions with “any mesh” for “any Re.” The illogical aspect is that the 
combination of a lower order, less accurate method and a large Re should dictate the 
use of a finer mesh; but upwind schemes are consistently applied on coarser meshes 
and at higher Re. Finally, the physics of fluid behavior is well known to often be a 
strong function of Re in that the flow invariably becomes more complex as Re 
increases (at least for laminar flow); the danger of upwinding (on a coarse mesh) is 
that the simulation will often not “recognize” these complexities since it, in effect, 
reduces the effective Re by “just enough” to obtain a smooth, “reasonable-looking” 
solution, which is often (essentially) independent of Re. This effect could be 
particularly deleterious in situations displaying multiple, overlapping boundary 
layers. 

During the final revision of this paper, it was pointed out by a reviewer that there 
are some new developments for one-dimensional problems which give some hope that 
one day one may have reliable methods that are more accurate than conventional 
Galerkin FEM. In particular, the papers by Carroll and Miller and Morton and 
Barrett from the recent BAIL Conference [34] may ultimately be viable for 
Navier-Stokes simulations. 

SUMMARY AND CONCLUSIONS 

We have identified the major and minor causes of the wiggles in central difference 
(i.e., conventional FEM) approximations of the Navier-Stokes equations for a 
particular problem and generalized the results. We have also shown that solutions 
which are smooth a priori and which do not resolve the boundary layer are not very 
accurate (at least for this type of problem); grid refinement is required in the critical 
region near the leading corner. 

The numerical results presented, while limited in scope, are believed to be the most 
accurate available for flow over a step at Re = 200. They are probably close to 
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“converged” (i.e., represent a solution of the Navier-Stokes equations) for the 
channel case. They are not so well converged for the semi-infinite domain case, which 
displays a significantly different solution; here the results are merely suggestive. We 
have also shown that the details of the separated flow behind the step are strongly 
affected by the upper “boundary condition.” 

We hope that we have succeeded in demonstrating that the conventional Galerkin 
FEM is not “inappropriate” for difficult computations. On the contrary, we have 
attempted to demonstrate that it may be most appropriate if one is seeking accurate 
solutions and have tried to provide sufficient reasons for interpreting many upwind 
simulations, and the results therefrom, cautiously and even suspiciously. 

ACKNOWLEDGMENTS 

The authors have benefited from useful discussions with Dr. R. L. Lee of LLL, Professor R. L. Sani of 
the University of Colorado, and Dr. D. K. Gartling of Sandia Laboratories; their critical reviews of the 
first draft of this paper are also gratefully acknowledged as is that of Dr. R. C. Y. Chin of LLL. 

REFERENCES 

1. T. HUGHES, W. LIU, AND A. BROOKS, J. Compur. Phys. 30 (1979), 1. 
2. G. W. HEDSTROM AND A. OSTERHELD, J. Comput. Phys. 37 (1980), 399-421. 
3. 0. C. ZIENKIEWICZ AND J. HEINRICH, Comp. Meth. Appl. Mech. Engr. 17/18 (1979), 673-698. 
4. J. HEINRICH, P. HUYAKORN, 0. ZIENKIEWICZ, AND A. MITCHELL, Int. J. Numer. Meth. Engr. 11 

(1977), 131-143. 
5. A. BROOKS AND T. J. HUGHES, in “Proceedings, Third International Conference on Finite Element 

Methods in Flow Problems, Banff, Alberta, Canada, June 10-13, 1980.” 
6. P. GRESHO AND R. L. LEE, in “Proceedings, ASME Symposium on Finite Element Methods for 

Convention-Dominated Flows, Winter Annual ASME Meeting, N.Y., Dec. 1979”; a revised and 
extended version of this paper will also appear in Computers and Fluids. 

7. D. GREENSPAN, J. Engrg. Math. 3 (1969), 21. 
8. M. FRIEDMAN, J. Engrg. Math. 6 (1977), 285. 
9. Y. WANG AND P. LONGWELL, A.Z.Ch.E. J. 10 (1964), 323. 

10. R. MILLS, J. Mech. Engr. Sci. 10 (1968), 133. 
11. D. GREENSPAN, Int. J. Numer. Meth. Engr. 6 (1973), 489496. 
12. G. MATTINGLY AND R. DAVIS, in “Proceedings, ASME Winter Annual Mtg.” paper No. No. 77- 

WA/FE-13, 1977. 
13. F. NIGRO, A. STRONG, AND S. ALPAY, ASME J. Fluid Engr. 100 (1978), 467. 
14. P. ROACHE AND T. MUELLER, AIAA J. 8, No. 3 (1970), 530. 
15. H. MOFFATT, J. Fluid Mech. 18 (1964), 1. 
16. S. WEINFJAUM, J. Fluid Mech. 33, part 1 (1968), 38-63. 
17. M. KAWAGUTI, “Numerical Solutions of the Navier-Stokes Equations for Flow in a Channel with a 

Step,” Tech. Summary Rept. 574, Mathematics Research Center, University of Wisconsin, Madison, 
1965. 

18. T. MATSLII, M. HIRAMATSU, AND M. HANAKI, in “Proceedings, Fourth Biennial Symp. on Turb. in 
Liq., University of Missouri, Rolla, 1975, pp. 29-1, 29-6. 

19. H. SCHLICHTING, “Boundary Layer Theory,” McGraw-Hill, New York, 1960. 



FLOW OVER A STEP 191 

20. A. HUTTON AND R. SMITH, “The Prediction of Laminar Flow over a Downstream-Facing Step by 
the Finite Element Method,” RD/B/N3660, Central Electricity Generating Board, London, England, 
April, 1979. 

21. M. OLSON AND S. TUANN, in “Finite Elements in Fluids,” Vol. 3, pp. 73-89, Wiley, New York, 
1978. 

22. R. SANI, P. GRESHO, AND R. LEE, in “Proceedings, Third International Conference on Finite Ele- 
ment Methods in Flow Problems, Banff, Alberta, Canada, June 10-13, 1980.” 

23. P. GRESHO, R. LEE, AND R. SAN], in “Recent Advances in Numeical Methods in Fluids,” Pineridge 
Press Ltd., Swansea, U.K., 1980. 

24. J. LEONE, P. GRESHO, S. CHAN, AND R. LEE, ht. J. Numer. Engr. 14 (1979), 769-773. 

25. D. GARTLING AND E. BECKER, Comp. Meth. Appl. Mech. Engr. 8 (1976), 51-60. 
26. P. HOOD, Int. J. Numer. Meth. Engr. 10 (1976), 379-399. 
27. S. TANEDA, J. Phys. Sot. Japan 46 (1979), 1935-1942. 
28. R. SAN], P. GRESHO. D. TUERPE, AND R. LEE, Paper presented at the International Conference on 

Numerical Methods in Laminar and Turbulent Flow, University College of Swansea, Wales, July 
17-21. 1978; also available as UCRL-80553, 1978. 

29. R. LEE, P. GRESHO, AND R. SANI, Int. J. Numer. Meth. Engr. 14 (1979), 1785-1804. 
30. R. L. LEE, P. M. GESHO, S. T. CHAN, AND R. L. SANI, in “Proceedings, Third International Con- 

ference on Finite Element Methods in Flow Problems, Banff, Alberta, Canada, June 10-13, 1980.” 
31. D. GARTLING, Znt. J. Numer. hfeth. Engr. 12 (1978), 187-190. 

32. G. DE VAHL DAVIS AND G. MALLINSON, Comput. Fluids 4 (1976), 29943. 
33. A. MOULT, D. BURLEY, AND H. RAWSON, Int. J. Numer. Engr. 14 (1979), 11-35. 

34. J. J. H. MILLER (Ed.), “Boundary and Interior Layers-Computational and Asymptotic Methods,” 
Proceedings of BAIL 1 Conference held at Trinity College, Dublin, June 2-6, 1980, Boole Press 
Ltd., Dublin, Ireland, 1980. 


